New article in Nanoscale

Development of a universal conductive platform for anchoring photo- and electroactive proteins using organometallic terpyridine molecular wiresResolution enhancement in NMR spectra by deconvolution with compressed sensing reconstruction

Margot Jacquet, Miriam Izzo, Silvio Osella, Sylwia Kozdra, Paweł P. Michałowski, Dariusz Gołowicz, Krzysztof Kazimierczuk, Maciej T. Gorzkowski, Adam Lewera, Marian Teodorczyk, Bartosz Trzaskowski, Rafał Jurczakowski, Daniel T. Gryko ORCID and Joanna Kargul

Graphical abstract: Development of a universal conductive platform for anchoring photo- and electroactive proteins using organometallic terpyridine molecular wires

The construction of an efficient conductive interface between electrodes and electroactive proteins is a major challenge in the biosensor and bioelectrochemistry fields to achieve the desired nanodevice performance. Concomitantly, metallo-organic terpyridine wires have been extensively studied for their great ability to mediate electron transfer over a long-range distance. In this study, we report a novel stepwise bottom-up approach for assembling bioelectrodes based on a genetically modified model electroactive protein, cytochrome c553 (cyt c553) and an organometallic terpyridine (TPY) molecular wire self-assembled monolayer (SAM). Efficient anchoring of the TPY derivative (TPY-PO(OH)2) onto the ITO surface was achieved by optimising solvent composition. Uniform surface coverage with the electroactive protein was achieved by binding the cyt c553 molecules via the C-terminal His6-tag to the modified TPY macromolecules containing Earth abundant metallic redox centres. Photoelectrochemical characterisation demonstrates the crucial importance of the metal redox centre for the determination of the desired electron transfer properties between cyt and the ITO electrode. Even without the cyt protein, the ITO-TPY nanosystem reported here generates photocurrents whose densities are 2-fold higher that those reported earlier for ITO electrodes functionalised with the photoactive proteins such as photosystem I in the presence of an external mediator, and 30-fold higher than that of the pristine ITO. The universal chemical platform for anchoring and nanostructuring of (photo)electroactive proteins reported in this study provides a major advancement for the construction of efficient (bio)molecular systems requiring a high degree of precise supramolecular organisation as well as efficient charge transfer between (photo)redox-active molecular components and various types of electrode materials.


Data publikacji: 04 October 2021